
1334 � 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim DOI: 10.1002/cbic.200400143 ChemBioChem 2004, 5, 1334 – 1347



The Systems Biology of Glycosylation
Michael P. Murrell, Kevin J. Yarema,* and Andre Levchenko*[a]

Introduction

The surface of virtually every living cell is decorated with a
layer of complex carbohydrates. In mammals, these sugars play
important structural and signaling roles that are indispensable
for the development and maintenance of the multicellular or-
ganism. The complexity of the glycosylation pathways that
manufacture and constantly remodel surface sugars is truly as-
tounding; this metabolic system utilizes many hundreds of
components that connect metabolism, biosynthesis, and cell-
signaling and -regulation events. We now increasingly accept
that reductionist approaches, where components of complex
systems such as glycosylation are studied alone, are often in-
sufficient for understanding the inherent complexity in biologi-
cal systems. More integrative methods have been termed sys-
tems analysis and emphasize global properties of robustness,
regulation, and control. Glycosylation provides a perfect oppor-
tunity to employ a systems approach on an important biologi-
cal system whose properties resist full definition when study
remains limited to a reductionist approach.

The advent of high-throughput technology and the genera-
tion of annotated genome sequences have facilitated great
strides in the reconstruction and quantitative treatment of bio-
chemical metabolic networks of systems as complex as entire
cells.[1–3] A tight integration of modeling and experimental
studies enables the analysis of cells and organisms at the
genome level by complementing the narrowly focused charac-
terization of individual components. Metabolic systems, such
as the glycosylation pathways responsible for the biosynthesis
of cell-surface carbohydrates, are ideal for analysis by a sys-
tems approach as many computational and modeling tools
have been developed for their study. These developments in-
clude the availability of the corresponding annotated genome
sequences specifying glycosylation enzymes across different
organisms, an increasing knowledge of the various regulatory
mechanisms that these metabolic enzymes are subject to, and
the characterization of the highly diverse metabolic products.
The enzymes involved in glycosylation can be “promiscuous”
in their specificity or redundant, thereby complicating the anal-
ysis of metabolic synthesis and conversion.[4] In terms of regu-
lation, the activity of glycosylation enzymes can be controlled
by gene activation, repression, and direct protein–protein in-

teractions that are often “fine-tuned” by the spatial localization
of these proteins. Furthermore, glycosylation is amenable to
experimental validation, as defects in enzyme regulation often
result in observable phenotypes. Thus, we propose that, by ap-
plying an integrative conceptual framework in studying global
glycosylation properties, advantage can be taken of the con-
siderable expertise that has been devoted to the systems
study of metabolism. At the same time, however, glycosylation
presents new challenges to the systems biologist/computa-
tional modeler; for instance, the incredible diversity of the
metabolic products of the glycosylation pathways, namely, the
collective complement of cell-surface carbohydrates, compli-
cates analysis. Furthermore, glycosylation often lies at the in-
terface between metabolism and cell signaling, thereby
making analysis even more demanding.

Complexity in Glycosylation

Glycosylation is a complex process that requires a major com-
mitment of cellular resources; it employs an estimated 2–3%
of the genes in humans and many high-energy intermediates.
The first step in glycosylation is the import of dietary sugars,
such as glucose, into a cell (Scheme 1, Step A). This is followed
by a series of phosphorylation, epimerization, and acetylation
reactions that diversify these sugars and convert them into
high-energy nucleotide sugar donors (Scheme 1, Step B, and
Scheme 2). These compounds serve as the “building blocks”
for the assembly of complex carbohydrates in the endoplasmic
reticulum (ER) and Golgi apparatus (Scheme 1, Step C, and
Scheme 3). The newly synthesized carbohydrates, which are
generally attached to proteins or lipids, are then transported
to the cell surface where they contribute to the interaction be-

Glycosylation can have a profound influence on the function of a
variety of eukaryotic cells. In particular, it can affect signal trans-
duction and cell–cell communication properties and thus shape
critical cell decisions, including the regulation of differentiation
and apoptosis. Regulation of glycosylation has multiple layers of
complexity, both structural and functional, which make its experi-

mental and theoretical analysis difficult to perform and interpret.
Novel research methodologies provided by systems biology can
help to address many outstanding issues and integrate glycosyla-
tion with other metabolic and cell regulation processes. Here we
review the toolbox available for biochemical systems analysis of
glycosylation.
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tween a cell and its environment by playing important struc-
tural and signaling roles.[5, 6]

A signature of glycosylation reactions is the immense multi-
plicity of chemical structures they produce. In combination
with the cellular machinery involved in the synthesis and mod-
ification of these complex carbohydrates, glycosylation pro-
cesses are very rich in products, even on the metabolic-system
scale. Carbohydrates exhibit greater structural diversity than
other cellular macromolecules, such as nucleic acids and pro-
teins, because each sugar residue has three or four different
hydroxy groups that can provide a point of attachment to an-
other monosaccharide unit, thereby allowing oligosaccharide
structures to form branches, as opposed to other macromole-
cules which typically form linear chains. As a result, in theory,
the nine common monosaccharides found in humans could be
assembled into more than 15 million possible tetrasaccharides,
all of which would be considered relatively simple glycans.[7]

The complexity of glycosylated molecules is increased still fur-
ther because many glycoproteins have multiple (sometimes
dozens) sites for the attachment of the sugar and each site
can host many different oligosaccharides. The prion protein
(Prp), for example, can be decorated with over 50 different
sugar structures at either of two different attachment sites.[8]

Interestingly, glycosylation variants of the diseased form of the
prion protein (PrPsc) influence the development of spongiform
encephalopathies,[9] thereby providing just one of many exam-
ples where diversity in cell-surface carbohydrate architecture is
coupled with the development of disease-state phenotypes.
Uncovering the underlying connections between structure and
function is a daunting task considering that the heterogeneity
of the cell-surface carbohydrates makes characterizing even a
single glycoprotein a formidable challenge.

The complexity of carbohydrate structure is matched by the
intricacy of the intracellular mechanisms that produce glycans.
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Recent evidence contradicts the previously held central dogma
of glycobiology, that is, the “one-enzyme, one-linkage” rule
that was thought to govern glycosyltransferase activity.[4] More
specifically, as progress continues in fully elucidating the con-
stituent components of the “glycosylation machinery”, more
than 250 enzymes devoted to oligosaccharide biosynthesis (in-
cluding glycosyltransferases) have been described and it has
been discovered that multiple enzymes are capable of catalyz-
ing exactly the same reaction. In other cases, a single enzyme
can catalyze the synthesis of more than one linkage. These
findings complicate attempts to connect a carbohydrate struc-
ture with a unique sequence of enzyme actions. Further com-
plicating the biosynthetic process is the fact that, unlike pro-
teins whose amino acid sequence is specified by a DNA tem-
plate, carbohydrate synthesis is not template based. Instead,
oligosaccharide biosynthesis results from a series of step-by-
step enzymatic conversions occurring in the ER and Golgi ap-
paratus and the final carbohydrate structures produced are
thought to depend largely on factors such as the transport of
nucleotide sugar donor “building blocks” into these organelles
and the spatial orientation of the biosynthetic enzymes.

Glycosylation Is Tied to Other Cellular
Processes

The complex glycosylation pathways of a cell do not exist in
isolation; instead they are intimately connected and inter-
twined with other critical metabolic and regulatory networks
of a cell (Scheme 1). For instance, the major dietary sugar glu-
cose is not used exclusively for biosynthesis of larger carbohy-
drates, but rather the majority of it enters the “hexosamine
pathway” (Scheme 1, Step D)[10] where it is converted into Fru-
6P, which is in turn used for energy production through glycol-
ysis. Interestingly, Fru-6P can also be converted into GlcNAc,
which is used as a building block for glycosylation. Also, phos-
phoenol pyruvate (PEP), a product obtained from Fru-6P
through glycolysis and the Krebs cycle, is a required cosub-
strate in the sialic acid biosynthetic pathway. Diversion of met-
abolic flux from the hexosamine pathway for these purposes is
expected to alter the formation of UDP-GlcNAc (itself used for
glycosylation), a compound whose concentration largely deter-
mines the extent of O-GlcNAc protein modification within a
cell (Scheme 1, Step E). O-GlcNAc protein modification is a

Scheme 1. An overview of mammalian glycosylation (Steps A–C) and a sampling of the metabolic and signaling connections formed by the “glycosylation machi-
nery” of a cell (Steps D–G). Please see the text for a detailed discussion and the tables for the full names of the monosaccharide intermediates, transporters, and en-
zymes involved in these processes (as well as those in Schemes 2–4.
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posttranslational addition of a single GlcNAc to hundreds of
different cytosolic proteins; this modification influences the ac-
tivity of the host protein and is emerging as a major intracellu-
lar regulatory/signaling mechanism that affects many cellular
behaviors (Scheme 1, Step F).[10,11]

Apoptosis provides an illustrative example of how intracellu-
lar glycosylation processes and cell-surface carbohydrates
engage in a complex interplay to modulate important biologi-
cal events. First, in intracellular events, the above-mentioned
O-GlcNAc protein modification reaction is connected to the
regulation of apoptosis. Overall levels of O-GlcNAc proteins are
up-regulated in cells undergoing stress; this increase functions
as a prosurvival mechanism for the affected cell. Upon exceed-
ing a certain stress threshold, however, O-GlcNAc protein levels
rapidly decline and the apoptotic program is allowed to pro-
ceed.[12] Another intracellular connection between apoptosis
and glycosylation is emerging wherein the rate of metabolic
flux through the sialic acid pathway appears to play a role in
modulating apoptosis (Scheme 1, Step G).[13] The surface-dis-
played products of the intracellular pathways are also involved
in apoptosis. For example, a reduction in sialic acid presented
on specific cell-surface markers, such as Fas, sensitizes a cell to
apoptosis;[14,15] similarly, overall cellular levels of sialic acid de-
cline during apoptosis. By contrast, an increase in sialic acid on
another cell-surface protein, CD43, occurs during early onset of

apoptosis.[16] The challenge is to define how different individual
forms of surface sialic acid are simultaneously up- (CD43) or
down- (Fas) regulated during apoptotic cell death when the
only known regulator of sialic acid biosynthesis, the GNE
gene,[17] lies far upstream of these two metabolic products and
should affect the production of each sialoglycoprotein equally,
according to current understanding.

Considerations in Modeling Glycosylation

The process outlined above where cellular energy utilization,
O-GlcNAc protein modification, and surface carbohydrates
engage in a complex interplay to govern a crucial biological re-
sponse such as apoptosis provides only one of many possible
examples that could be used to illustrate how glycosylation in-
volves a level of complexity that can ultimately only be under-
stood by employing an integrated systems approach. To fully
understand how this complex system works in healthy cells, as
well as to discover how glycosylation-modulated behaviors
contribute to the progression of disease states, we propose
that it is necessary to identify the systems properties of glyco-
sylation, to determine the mechanisms of control and regula-
tion, and to elucidate the critical elements that determine the
fragility and robustness of the underlying biochemical process-
es to various perturbations. Applying a systems-level analysis

Scheme 2. Monosaccharide transport and metabolic processing reactions. Extracellular sugars are transported into cells (dashed lines), converted into additional va-
rieties of monosaccharides by a series of phosphorylation, epimerization, and acetylation reactions, then condensed with CTP, GTP, or UTP to form nucleotide sugar
donors (solid lines). The nucleotide sugar donors function as the “building blocks” for the production of complex carbohydrates ; their biosynthesis generally occurs
after they are transported into the ER or Golgi compartments (dashed lines).
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to glycosylation, however, presents unique challenges to the
researcher and efforts to model this system have lagged
behind other well-studied networks such as the MAP kinase[18]

or NF-kappaB[19] pathways. Briefly stated, a systems study of
glycosylation requires the simultaneous incorporation of three
lines of investigation, up to now typically addressed separately
but with limited success, into one coherent modeling effort.
These aspects are a) integrating the catalytic and spatial as-
pects of carbohydrate biosynthesis, b) studying the role of gly-
cosylation at the intersection of metabolism, cell adhesion, and
signaling, and c) accounting for how metabolic products can
be “fine-tuned” in myriad ways. Each of these factors will be
discussed briefly, with the intention not to provide a definitive
guide to how glycosylation should (or must) be modeled but
rather to motivate the investigation of the underlying systems
properties in glycosylation and spark interest in the develop-
ment of new approaches to its study.

Carbohydrate Biosynthesis Involves Both
Catalytic and Spatial Considerations

As mentioned above, the application of a computational ap-
proach to study the systems properties of glycosylation in-
volves unique and novel challenges. Consequently, it is benefi-
cial to briefly consider the basic subsystems and elements that
need to be included in initial efforts to model glycosylation. In
the past, attempts to apply computational approaches to gly-
cosylation were performed with the assumption that consider-
ation of the metabolic processes that occur in the ER and
Golgi, where the glycans are actually assembled and diversi-
fied, was sufficient. For example, Monica and co-workers as-
sumed that CMP-Neu5Ac, the building block for sialic acid bio-
synthesis in human cells, was maintained at saturating concen-
trations in the Golgi and competition between the various sia-
lyltransferases that produce a2,3-linked, a2,6-linked, or a2,8-
linked sialosides was the primary factor to consider in model
production (Scheme 3).[20] It is now known that this approach

Scheme 3. Metabolic details of sialoglycoconjugate biosynthesis. The basic “sialic acid biosynthetic pathway” (as shaded in Scheme 2) has many additional poten-
tial and realized metabolic connections that need to be considered when building a rigorous model. For instance, both exogenously supplied ManNAc and Neu5Ac
can gain access to the pathway although no specific transporters have been identified. Also, the renin-binding protein (RENBP), although not expressed in all cells,
provides an alternative means of ManNAc being supplied into the pathway (or flux being diverted away from the pathway). Upon production of the CMP-Neu5Ac
“building blocks”, these compounds contribute a sialic acid residue during the assembly of sialoglycoconjugates. The final biosynthetic step is catalyzed by a suite
of sialyltransferases (SIATnx)that work in parallel to provide a2,3-, a2,6-, or a2,8-linked sialoglycoconjugates, as discussed in more detail in the text.
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was over-simplified and at least two additional factors must be
considered: the availability of nucleotide sugar donors in the
ER or Golgi and the expression and spatial localization of the
biosynthetic enzymes. Each issue will be discussed briefly in
the following paragraphs.

In-depth analysis of the mechanisms responsible for glycosy-
lation indicates that the supply of nucleotide sugar donors
into the Golgi or ER can play a defining role in determining
the finer details of cell-surface architecture. In one study, cer-
tain galactose-containing products are made normally (heparin
sulfate, chondroitin 4-sulfate) while others are severely reduced
(glycoproteins, glycolipids, keratin sulfate) when UDP-Gal is
limited.[21] An altered supply of nucleotide sugar donors in the
ER or Golgi can result from two different metabolic abnormali-
ties. The first type of abnormality is illustrated by the congeni-
tal disease leukocyte adhesion deficiency II (LADII), which
occurs when defective GDP-Fuc transport into the Golgi results
in a decrease in the availability of this nucleotide sugar donor
to the glycosyltransferases that collectively assemble oligosac-
charides displayed on the cell surface.[22–26] This transport
defect results in decreased N-linked glycosylation but little
change in O-linked glycosylation.[27] Thus, while the bulk levels
of fucosylation have not changed significantly, the altered pat-
tern of glycosylation, where certain crucial epitopes such as
blood group antigens or selectin ligands are defective, leads to
clinical manifestation of the disease. The second type of meta-
bolic abnormality is the up- or down-regulation of nucleotide
sugar production in the cytosol. The sialic acid biosynthetic
pathway (Scheme 3), which produces CMP-Neu5Ac for trans-
port into the Golgi, provides an example of both regulation
abnormalities. When the key regulatory enzyme, GNE, suffers
one type of single amino acid mutation, feedback inhibition is
lost and sialic acid production increases by several hundred
times, thereby resulting in the disease sialuria.[28–30] A second
set of single amino acid mutations reduce the activity of this
enzyme and result in a different human disease, hereditary in-
clusion body myopathy (HIBM).[31–33]

Sialic acid metabolism provides an intriguing system to
begin a detailed computational modeling study of glycosyla-
tion. This subsystem of glycosylation is considerably more
complex than shown in Scheme 2 or in many reviews of sialic
acid metabolism.[34,35] Indeed, the core “pathway”, designated
in gray shading, is amplified in Scheme 3 to show that the
metabolic machinery involved in the positioning of just one of
the nine monosaccharides incorporated in human glycans is
highly complex. Moreover, two important considerations
remain for the elements shown in Scheme 3. The first is the
regulation of the expression of both the Golgi-localized sialyl-
transferase and the pre-Golgi “pathway” enzymes. This consid-
eration is important because, in the past, attempts to model
metabolic flux without considering the regulation of the en-
zymes involved have led to the construction of models with
poor predictive abilities in general[36–38] and for sialic acid in
particular.[20] Accordingly, another factor to consider when pro-
ducing a computational model of glycosylation is the effect of
metabolic flux on the constituent biosynthetic enzymes. The
second important consideration is the spatial localization of

the sialyltransferases that install sialic acid residues onto the
nascent oligosaccharide under synthesis. As indicated in
Scheme 3, overlapping sets of these enzymes produce a2,3-,
a2,6-, and a2,8-glycosidic linkages on either protein- or lipid-
hosted carbohydrate structures. Current understanding is that
the exact placement of each type of linkage is largely deter-
mined by the exact spatial localization of each glycosyltransfer-
ase in the ER or Golgi ;[39,40] these results suggest that emerging
efforts to incorporate spatial features into modeling studies
will be crucial to successful computational approaches to un-
derstanding glycosylation.

Glycosylation Lies at the Intersection of
Metabolism, Adhesion, and Cell Signaling

Typically, systems level approaches to modeling in metabolism
have focused on the output of secreted molecules or on the
optimization of factors such as energy production, cell growth,
or increase in bulk levels of biomass but not on persistent
changes such as those seen in cell-surface carbohydrate archi-
tecture and the intracellular processes that produce them. The
example of apoptosis discussed above provides one situation
where surface-displayed sugars remain intricately connected
to, and continue to regulate, both the metabolic pathways
that synthesize them and other aspects of cellular function;
many other equally important examples are known, including
the interaction of growth-factor receptors with intrinsic tyro-
sine kinases,[41,42] modulation of integrin function,[43–45] and acti-
vation of cytoplasmic signal transducers, such as Src family ki-
nases and small G proteins.[5, 6,46, 47] The complexity of events
mediated at the cell surface can be seen by considering the
“glycosynapses”, which are microdomains characterized by dis-
tinctive clustering of glycolipids or glycoproteins. Three types
of glycosynapses are now known, each having the ability to si-
multaneously interact with key sets of transmembrane recep-
tors or signal transducers and modulate cell adhesion and mo-
tility.[5] Tying all these complex systems together based on
their common connections to glycosylation will require an in-
tense level of investigation for the foreseeable future.

Carbohydrate Biosynthesis Produces
“Fine-Tuned” Products that Remain Subject
to Dynamic Modification

Perhaps paradoxically, the many large-scale influences of glyco-
sylation in cellular processes are often determined by very
slight or subtle chemical changes to carbohydrate structure.
Furthermore, such molecular-level “fine-tuning” is often tran-
sient and reversible, thereby allowing dynamic modulation of
signal transduction and cell adhesion. Once again, sialic acid
can be used to provide an illustrative example. As shown in
Scheme 4A, multiple posttranslational modifications control
the activity of the sialyl Lewis X (sLeX) tetrasaccharide in the
leukocyte homing process. sLeX has been shown to function as
a ligand for all three (E-, L-, and P-) selectins when studied by
in vitro assays but in vivo specificity is more highly stringent
and is determined by several factors. First, the identity of the
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host molecule plays a role in specificity; sLeX is a ligand for P-
selectin when attached to PSGL-1, but it is a ligand for L-selec-
tin when presented on CD34 or Glycam-1 and a ligand for E-
selectin when it is hosted by a ganglioside.[48] Further discrimi-
nation is achieved by sulfation of position 6 of the GlcNAc
and/or galactose residues (Step 1); this modification is required
for binding to L-selectin under physiological conditions.[49,50]

Further modification of the sialic acid residue of sLeX by step-
wise de-N-acetylation of position 5 (Step 2) followed by cycliza-
tion of the sialic acid residue (Step 3) inhibits binding to L-se-
lectin. It has been proposed that these two posttranslational
modifications of sLeX allow the immune system to control the
recruitment of leukocytes at different rates during routine
homing and inflammation. The negative feedback sialic acid
cyclase system allows routine homing of leukocytes at a “slow
and steady” rate, whereas massive accumulation of lympho-
cytes to sites of inflammatory lesions is mediated mainly by
the interaction of nonsulfated sLeX with P-selectin.[51,52]

A second example of the role of sialic acid in modulating
key cellular events is given in Scheme 4B where the subtle
changes in sialic acid structure dramatically affect cellular deci-
sion processes by acting as a switch for proliferation and apop-
tosis modes. More specifically, when the glycolipid lactosylcera-
mide (LacCer) is converted into the GM3 ganglioside by addi-
tion of a single a2,3-linked sialic acid residue (Step 1), this met-
abolic product is weakly or moderately proapoptotic in many

cell types[6,53] but stimulates cell proliferation when it is further
converted into the de-N-acetyl form (Step 2).[41,54] In an alterna-
tive modification of GM3, the addition of an a2,8-linked sialic
acid residue produces the GD3 ganglioside (Step 3), which is a
potent inducer of apoptosis; interestingly, 9-O- or 7-O-acetyla-
tion of the terminal sialic acid residue of GD3 (Step 4) produces
AcGD3, a molecule with antiapoptotic properties.[55, 56] The abili-
ty of cells to rapidly modify their cell-surface expression of oli-
gosaccharides in response to internal signals or extracellular
stress in these subtle manners illustrates how minor local
changes can have global, whole-cell repercussions that poten-
tially involve numerous cell-regulation pathways. The resultant
implications for cell-wide behavior are that command of cell-
wide fragility can occur on the molecular scale and the effects
of local changes to carbohydrate structure resonate to various
global processes. Careful attention to detail in modeling efforts
will be required to ensure that minor local glycosylation
changes are not overlooked amid much larger system-wide
changes.

Methods of Systems Analysis

As discussed above, a systems-level analysis of glycosylation
must relate the large-scale interactions that contribute to car-
bohydrate synthesis and cell-surface presentation with single
molecule-level processes that fine-tune product conversion in

Scheme 4. Postsynthetic modifications fine-tune the activity of cell surface carbohydrates. Subtle postsynthetic chemical modifications to cell-surface carbohydrate
epitopes influence important cellular behaviors including leukocyte homing (panel A) and function as a switch between proliferation and apoptosis (panel B). Each
of these examples is discussed in more detail in the text. The * and # symbols are visual aids to direct attention to the chemical changes taking place.
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individual reactions. One of the important aspects of systems
analysis is the identification of key regulation mechanisms that
occur across both levels, from the molecular feedback inhibi-
tion of allosteric enzyme binding, such as the GNE enzyme in
the sialic acid network, that affects an entire biosynthetic path-
way (Scheme 3) to the impact of an event such as conversion
of GM3 into GD3 (Scheme 4B). This latter event, while only in-
volving one of over a dozen or more sialyltransferases found in
a cell and only one of hundreds of different metabolic prod-
ucts bearing sialic acid, has the potential to trigger apoptosis
and completely shut down sialic acid biosynthesis.[13] These ex-
amples show that, while systems properties have been identi-
fied in various extensively studied metabolic pathways, glyco-
sylation provides a rich conduit from which we can explore
the complexity of these intracellular mechanisms by observing
the resultant cell-surface characteristics, that is, the diverse
structure of complex carbohydrates can act as “signatures” of
unique sequences of intracellular events. Up to now, there
have been few attempts at modeling glycosylation; however,
we predict that constraint-based methods, such as metabolic
flux analysis (MFA), and more quantitative approaches, such as
metabolic control analysis (MCA), can identify these mecha-
nisms to benefit the study of carbohydrate synthesis and sur-
face presentation. Owing to the relative infancy of modeling in
glycosylation, we will merely provide the biochemist with an
overview of analytical and computational methods currently
used to study many metabolic systems and thereby motivate
extension of the analysis to glycosylation. In particular, empha-
sis will be placed on the connections between the intracellular
metabolic processes that produce glycans and the surface as-
pects that present them, as these are often complex and in-
volve many large-scale regulatory motifs, including both syn-
thesis in the forward direction and recycling of surface sugars,
as well as the influence of signaling.

Constraint-Based Modeling in Metabolic
Systems

In one approach to modeling metabolic systems, entire bio-
chemical reaction networks can be expressed as systems of
linear equations, with parameters representing the stoichio-
metric coefficients. These equations can be further represented
by an (m,n) stoichiometric matrix S of m metabolites and n re-
actions. More technically, the stoichiometric matrix is a linear
transformation of an n-length vector of the system variables,
the metabolic fluxes (v), which describe the rates of metabolite
conversion. The result is a vector of time derivatives of metab-
olite concentrations, which when expressed at a steady-state
yield steady-state fluxes. It can also be viewed as mass-balance
constraints on the system, conferred by the stoichiometric re-
action coefficients. This is known as the nullspace of the linear
system [Eq. (1)] .[57]

Sv ¼ 0 ð1Þ

The solutions of Equation (1) are often not unique and addi-
tional assumptions, such as reaction capacities, are used to fur-

ther constrain the possible solution space (an approach
common to flux balance analysis[58,59] (FBA)). This establishes a
limit on the enzyme turnover rate and allows us to study the
flux distributions in more detail. Specifically, from some experi-
mental considerations, one can assume that certain fluxes
must be within the capacities given in Equation (2), where lbi

and ubi are the lower and upper bounds on the reaction flux vi

(where i indicates the index for the fluxes). They would also be
subject to thermodynamic constraints expressing the generally
valid assumption that each irreversible reaction flux must pro-
ceed in the forward direction and would therefore need be
nonnegative, so Equation (3) would apply.

lbi > vi > ubi ð2Þ

vi � 0 ð3Þ

This is obviously true for the fluxes that act as the input and
output of the pathway. Furthermore, the elimination of ther-
modynamically infeasible solutions can further constrain the
solution.[60] Given sufficient constraints, whether they originate
from thermodynamics, mass balance, or enzyme capacities, we
can fully characterize the system, thereby yielding precise re-
gions of allowable metabolic flux.[58]

This stoichiometric method of representation is useful from
a systems perspective, as the stoichiometric matrix contains in-
formation about the topology or connectivity of reaction spe-
cies, which is very important in determining the properties of
the network.[61,62] Modeling in metabolism typically aims at de-
termining a unique (or precise) set of metabolic flux distribu-
tions in a pathway or identifying the elements that can control
or yield an optimal flux. In this methodology, one is not re-
quired to specify the actual functional form of kinetic equa-
tions governing the chemical reactions. Rather, one is satisfied
with the simple notion of flux values. These are the central
premises behind classic modeling methods, such as MFA, and
are extended for more sophisticated methods of pathway re-
construction, such as FBA, elementary node analysis,[63] and ex-
treme pathway analysis.[64] It also provides a more conceptual
framework for more precise methods, such as MCA.

Metabolic Flux Analysis

Metabolic flux analysis is a constraint-based method for model-
ing biochemical reaction networks that relies on reaction stoi-
chiometries and mass balances to determine a precise distribu-
tion of fluxes.[65,66] It takes metabolic fluxes as its system vari-
ables and applies constraints to reduce their allowable ranges
(the S matrix above). Each metabolite is considered a “pool”,
where the rates of transfer into the pool must be balanced
with what exits the pool. The way to analyze this transfer is de-
termined by the difference between the number of unknown
fluxes and the metabolites, known as the degrees of freedom.
The number of measured fluxes can therefore be equal to, less
than, or greater than the degrees of freedom. In the case
where there is an equal number of measured fluxes and de-
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grees of freedom, the system is uniquely determined and the
linear relation in Equation (1) has one solution, which would
then satisfy MFA. A unique solution however is rare and it is
more common that the degrees of freedom and the measured
fluxes are unequal. In cases where there are more measured
fluxes, the system is overdetermined and there is redundancy
in the system. This redundancy can be exploited to get more
precise estimations on both the measured and nonmeasured
fluxes. This is however a somewhat ideal case and does not
occur frequently. The most common case is one where the
system is underdetermined and the degrees of freedom
exceed the number of measured fluxes.[67] In this case, there
are an infinite number of solutions to satisfy the system and
methods of linear programming must be used to reduce the
total set of solutions. To do so requires that further assump-
tions are made concerning the metabolic system. We often
presume that the metabolic system in question has an objec-
tive, that its behavior is optimized towards achieving one or
more goals, which can help us to determine this precise set of
flux distributions. In methods like FBA, this goal takes the form
of an objective function, a mathematical relationship that re-
lates the fluxes to some extreme value. Often, we are looking
to maximize or minimize a particular function and obtain a set
of fluxes that correspond to that unique optimized metabolic
state. In a landmark paper by Palsson and co-workers, a quan-
titative relationship between carbon uptake (acetate or succi-
nate), oxygen uptake, and maximal growth was determined in
silico for Escherichia coli MG1655 and was experimentally veri-
fied by making the assumption that metabolism was optimized
for growth.[68] By using the reaction stoichiometry to constrain
the total solution space into what is termed a “flux cone”,[1,69]

it was possible to identify the set of flux distributions that cor-
responded to the maximum growth rates under different con-
ditions. The resultant predicted and experimentally observed
fluxes agreed and thus confirmed the proposed objective, the
rate of cell growth. Consequently, it was also shown that con-
straint-based methods of reaction flux determination can be
valuable in the absence of precise kinetic information.

The concept of flux cones, in particular, is conceptually ac-
cessible for illustrating the importance of a constraint-based
approach. The flux cone corresponds to a set of allowable
fluxes in the metabolic network. If all fluxes were allowable,
then the boundaries of the flux cone would be just the set of
axes. Based on just the stoichiometry, however, not all fluxes
are allowable and thus a restricted set can be identified, even
if the precise values cannot. Moreover, often certain fluxes are
known to be not possible, from the knowledge that certain re-
actions may not occur in the presence of other metabolites,
etc. The edges of the flux cones are the extreme pathways of
the system fluxes that describe the absolute range of feasibility
for the metabolic network. The magnitude of these boundaries
can illustrate important systems properties of a metabolic net-
work, such as robustness and fragility. Further analysis can be
done to adjust the boundaries or the extreme pathways of the
system from experimental invalidation. Additionally, there are
various avenues for reducing a set of flux distributions to
within acceptable ranges that can characterize a metabolic

system uniquely. Such a case could be a paradigm for model-
ing in glycosylation. Objectives in glycosylation will center on
the production of cell-surface carbohydrates but could take
the position that the goal is overall diversity or perhaps the
maximization of a specific glycoform. The use of FBA alone,
however, cannot give quantitative analysis of how the flux is
controlled. For such information, a more precise, quantitative
method should be used.

Sensitivity Analysis in Metabolic Systems

Metabolic control analysis

MCA is a quantitative method for studying how homeostasis is
maintained at the molecular level.[70,71] It focuses on the role of
enzymes and enzyme activities in controlling how metabolic
flux is distributed and how flux distributions are affected by
varying external conditions. Specifically, it studies the deviation
from steady-state flux levels given infinitesimal alterations to
enzyme activities ; this is conceptually similar to sensitivity anal-
ysis, a methodology used in many different fields. One impor-
tant aspect of MCA is that it requires detailed knowledge of
the reaction kinetics for all the reactions involved. MCA is par-
ticularly useful from a systems perspective, as many global
properties can be affected by alterations in a single molecule
or by a change in the details of a single metabolic reaction.
Feedback inhibition, cooperativity, and allosteric effects all con-
tribute to the regulation and control of metabolite synthesis,
modification, and degradation. Regulation of enzyme activity
through gene expression, proteolytic enzyme activity, and co-
valent modification all add an additional layer of complexity
that can be exploited from MCA.

For such high-resolution analysis, MCA requires nearly com-
plete enzyme characterization and knowledge of the kinetics
and constants of the enzyme reactions. Thus, the level of
detail required is much higher than for MFA and other con-
straint-based methods. Additionally, MCA hinges on a number
of assumptions. The most critical assumption is that the
system under study can be observed under steady state or
constant conditions. This means that the rates of “entry” and
“exit” for the aforementioned metabolic pools must be bal-
anced. Due to its high reliance on enzyme characterization and
kinetics, MCA is a much less scalable method than MFA and it
is most appropriate for relatively small metabolic pathways
and networks whose molecular and kinetic details are well
characterized.

Each enzyme confers a particular sensitivity and elicits a cer-
tain change in metabolic flux, which is related by flux control co-
efficients (FCCs).[70,72] Mathematically, the FCCs (Cvi

j) represent a
fractional change in metabolite flux (vi) in response to a fractional
change in enzyme activity (Ej), as described by Equation (4).

Cvi
j ¼ dvi

dEj

Ej

vi
for i,j 2 f1, . . . ,ng ð4Þ

Here, the full derivative is used to imply that both direct and
indirect influences of the change in enzyme activity on any
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flux v are taken into account. (dE may influence other system
variables as well.) Each control coefficient in itself has little
value, however, as they cannot be compared across separate
systems. Rather, all control coefficients are normalized and are
most informative in relation to other control coefficients char-
acterizing enzymes of a given pathway or network. Additional-
ly, control coefficients are not constant, as they reflect the sen-
sitivity to enzymatic change at a certain steady state. Further-
more, if the enzymatic activity is changed significantly beyond
equilibrium levels, the control coefficients become less accu-
rate, as the system can behave nonlinearly when far from equi-
librium. The concept of metabolic control coefficients may be
viewed as a part of a greater theory in metabolic modeling
called distributed control, which states that all enzymes in a
pathway can share the control of flux (and therefore no indi-
vidual enzyme has control over flux through the pathway).[37]

The proportion of control is related by the summation theorem
[Eq (5)] , which asserts that all of the coefficients must add up
to unity (for each flux).

Xn

j¼1

Cvi
j ¼ 1 for i 2 f1, . . . ,ng ð5Þ

This theorem does, however, leave open the possibility that
any individual coefficient can take negative values or values
greater than one, as can occur in pathways that contain
branches and cycles. Also, by this theorem, the magnitude of
any coefficient is most closely related with the location of the
enzyme in the overall pathway. In contrast, elasticity coeffi-
cients (EC) are used to reflect more local properties of the en-
zymes in the pathway. Elasticity coefficients are similar to flux
control coefficients but relate the sensitivity of fluxes (vi) with
metabolite concentrations (Xj), as described by Equation (6).

ei
Xj
¼ dvi

dXj

Xj

vi
for i 2 f1, . . . ,ng and j 2 f1, . . . ,kg ð6Þ

The difference is that with elasticity coefficients we want to
measure the precise change in flux with respect to a particular
metabolite. Generally speaking, we only want the direct ef-
fects. Furthermore, ECs relate the activity of an enzyme to the
substrate concentration and thus capture more of the molecu-
lar detail than control coefficients alone. Like control coeffi-
cients, however, elasticity coefficients are normalized; the par-
tial differential operators are shown to illustrate that all other
variables must be held constant.

For each metabolite Xj, we can also use the connectivity theo-
rem, which states that the flux coefficients are related to the
elasticity coefficients according to Equation (7), where Xj can
actually represent any compound that influences the reaction
rate, although it is more commonly applied to metabolite con-
centrations.

Xn

i¼1

CvL
i e

i
Xj
¼ 0 for i 2 f1, . . . ,ng and j 2 f1, . . . ,kg ð7Þ

Equation (7) is considered to be the most important of the
MCA theorems, because it allows us to understand how
enzyme kinetics affect flux control.[72]

MCA in glycosylation

Glycosyltransferases are the primary gene products in the “gly-
cosylation machinery”, and are critical to the promotion of car-
bohydrate structural diversity. They could be the focus of a
control approach to dissect the diversity of surface carbohy-
drates. Glycosyltransferases are a general family of carbohy-
drate-binding enzymes located in the ER and Golgi and can

Table 1. Monosaccharides, nucleotides, derivatives, and nucleotide sugar
donors.

Abbreviation Name/description

ATP adenosine 5’-triphosphate
CMP cytidine 5’-monophosphate
CMP-Neu5Ac CMP–N-acetylneuraminic acid
CMP-Neu5Gc CMP–N-glycolylneuraminic acid
CMP-Sia CMP–sialic acid
CTP cytidine 5’-triphosphate
Fru d-fructose
Fru-6P d-fructose-6-phosphate
Fuc l-fucose
Fuc-1P l-fucose-1-phosphate
Gal d-galactose
Gal-1P d-galactose-1-phosphate
GalNAc N-acetyl-d-galactosamine
GDP guanidine 5’-diphosphate
GDP-Fuc GDP–l-fructose
GDP-Man GDP–d-mannose
GDP-4-oxo-6-deoxy-
Man

GDP–4-oxo-6-deoxy-d-mannose

Glc d-glucose
Glc-1P d-glucose-1-phosphate
Glc-6P d-glucose-6-phosphate
GlcA d-glucuronic acid (or glucuronate)
GlcN d-glucosamine
GlcN-6P d-glucosamine-6-phosphate
GlcNAc N-acetyl-d-glucosamine
GlcNAc-1P N-acetyl-d-glucosamine-1-phosphate
GlcNAc-6P N-acetyl-d-glucosamine-6-phosphate
Man d-mannose
Man-1P d-mannose-1-phosphate
Man-6P d-mannose-6-phosphate
ManNAc N-acetyl-d-mannosamine
ManNAc-6P N-acetyl-d-mannosamine-6-phosphate
Neu5Ac N-acetylneuraminic acid (or N-acetylneurami-

nate)
Neu5Ac-9P N-acetylneuraminic acid 9-phosphate
Neu5Gc N-glycolylneuraminic acid (or N-glycolylneurami-

nate)
PEP phosphoenol pyruvate
Sia sialic acid (generic term for over 50 compounds)
UDP uridine 5’-diphosphate
UDP-Gal UDP–d-galactose
UDP-GalNAc UDP–N-acetyl-d-galactosamine
UDP-Glc UDP–d-glucose
UDP-GlcA UDP–d-glucuronic acid
UDP-GlcNAc UDP-N-acetyl-d-glucosamine
UDP-Xyl UDP–d-xylose
UTP uridine 5’-triphosphate
Xyl d-Xylose
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degrade, modify, or create glycosidic linkages, thereby synthe-
sizing oligosaccharides, polysaccharides, and glycoconjugates.
Each glycosyltransferase confers high specificity, through their
ability to generate one type of glycosidic bond. However, it is
the combination of redundancy and “promiscuity” of glycosyl-
transferases, the phenomenon of multiple enzymes generating
the same glycosidic bond and, conversely, the ability of one
glycosyltransferase to generate multiple bonds, that accounts
for the wide heterogeneity seen at the surface. Moreover,
while glycosyltransferases mediate carbohydrate generation for
the entire cell surface, they maintain molecular precision and
resolution.

Obstacles to metabolic control analysis in glycosylation

The primary obstacle to using these methods for the determi-
nation of metabolic fluxes is incomplete characterization of
pathway enzymes. Study of the sensitivity of fluxes to small
perturbations in enzyme activities implies that the enzyme ac-
tivities are already known. Accordingly, MCA requires almost
complete characterization of all of the enzymes in a metabolic
pathway as well as their modes of binding. Incomplete charac-
terization increases the “degrees of freedom” of the system.
Typically, with a small number of uncharacterized enzymes, the
enzyme parameters are allowed to vary within bounds estab-
lished by allowable fluxes and the knowledge of the sensitivity
of the other parameters in the model. The more “free” parame-
ters there are in the system, however, the less reliable MCA be-
comes and the more suitable a constraint-based approach be-
comes. Generally speaking, glycosylation pathways should be
amenable to an MCA approach, given that these pathways
tend to have a smaller number of enzymes than other bio-
chemical. Nevertheless, we continue to struggle with quantita-
tive modeling of glycosylation due to incomplete characteriza-
tion.

Conclusion

Cell-surface carbohydrates are critical in numerous cellular
processes, including cell–cell communication and cell signaling.
Glycosylation pathways are known to mediate these processes
and to influence cellular decisions, such as those about prolif-
eration and apoptosis. Contrastingly, glycosylation is also able
to retain the sensitivity for fine-tuning carbohydrates with mo-
lecular detail and resolution. Moreover, the intracellular mecha-
nisms that synthesize these glycans exhibit complexity that is
complemented by the extreme diversity and variation of com-
plex carbohydrates seen at the surface. Yet, unlike many other

Table 2. Hexose (monosaccharide) transporters.

Type Tissue Sugar transported Function/comments
(Michaelis constant, Km [mm])

SGLT family SLC5A family, member no. as shown in left column
SGLT-1 (A1) small intestine, kidney glucose (0.1–0.8), galactose major apical glucose transporter
SGLT-2 (A2) kidney glucose (1.6) glucose uptake
GLUT family
GLUT-1 (sub-
family (sf) I)

erythrocytes, blood/brain barrier glucose (3–5), galactose, mannose, glucos-
amine

primary glucose transporter in fetal cells

GLUT-2 (sf I) liver, small intestine, brain glucose (17), galactose (92), mannose
(125), fructose (76), glucosamine (0.8)

high capacity and low affinity

GLUT-3 (sf I) neurons, placenta glucose (1–2), galactose, mannose, mal-
tose, xylose, dehydroascorbate

primary glucose transporter of neurons

GLUT-4 (sf I) adipose tissue, skeletal muscle, glucose (5), glucosamine (3.9), dehydroas-
corbate

insulin-stimulated glucose uptake

GLUT-5 (sf II) small intestine fructose (6), glucose (in rat) primarily fructose absorption
GLUT-8
(sf III)

testis, blastocysts, brain, muscle, adi-
pocytes

glucose (2), galactose, fructose retained in an intracellular compartment and not re-
sponsive to insulin; formerly designated as GLUTX1

GLUT-10
(sf III)

heart, lung, brain, liver, skeletal
muscle, pancreas, placenta, kidney

2-deoxy-glucose (0.3), glucose, galactose

GLUT-11
(sf II)

heart, skeletal muscle glucose, fructose mRNA for this protein is detected in many tissues,
GLUT-11 occurs in three different splice forms (a–c).

Table 3. Nucleotide transport in the Golgi and ER.

Nucleotide Human Transporter name
sugar donor gene

ATP rat Golgi membrane ATP transport-
er

CMP-Sia SLC35A1 CMPST; CMP–sialic acid Golgi trans-
porter

GDP-Fuc SLC35C1 FUCT1; GDP–fucose transporter 1
GDP-Man Vrg4p; Yeast GDP–mannose Golgi

transporter
3’-phosphoadenosine
5’-phosphosulfate
(PAPS)

PAPST1 PAPS transporter

UDP-Gal SLC35A2 UGT; UDP–galactose transporter
UDP-GalNAc SLC35A2 UGT (see UDP-Gal)

SLC35D1 UGTrel7 (see UDP-GlcA)
UDP-Glc AtUTr1; Arabidopsis thaliana UDP–-

galactose/UDP–glucose transporter
UDP-GlcA SLC35D1 UGTrel7; UDP–glucuronic acid/

UDP–N-acetylgalactosamine trans-
porter

UDP-GlcNAc SLC35A3 UDP–N-acetylglucosamine trans-
porter
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metabolic systems and cell-signaling pathways, they have yet
to be studied extensively by a systems approach. The demand,
however, has been established, as we are increasingly realizing
the importance of connecting metabolic product synthesis
with other large-scale cellular functions. Thus, modeling in gly-
cosylation will present new challenges for the systems biolo-
gist but will also inevitably contribute to our knowledge of the
regulation and control of many cellular processes.

Tables 1–4 give definitions of the abbreviations found in the
schemes and comments on enzyme functions.
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